Jugar videojuegos de estrategia en tiempo real tiene efectos positivos en la memoria de trabajo

Contenido principal del artículo

Germán Octavio López Riquelme
Elia E. Soto Alba
Carlos Ricardo Mata Bautista

Resumen

Los videojuegos de estrategia en tiempo real (VJ-ETR) requieren que los jugadores planeen estrategias reclutando capacidades cognitivas como atención, habilidades motoras, habilidades visuoespaciales y memoria de trabajo (MT). Ya que jugar VJ-ETR depende del mantenimiento de metas principales y submetas activas, así como de la revisión dinámica de esas metas conforme la situación lo requiere, el objetivo de este trabajo fue estudiar si jugadores expertos de VJ-ETR (JExp-ETR) tienen una mayor capacidad de MT que no-jugadores (No-ETR). Para ello, comparamos el desempeño entre JExp-ETR y No-ETR en MT y velocidad de procesamiento (VP) empleando el Wechsler Adult Intelligence Scale (WAIS-IV) y la tarea n-back. Los resultados muestran que los JExp-ETR tienen un mayor índice de MT y una mejor precisión en el n-back que los No-ETR, principalmente en el 3-back, pero no encontramos diferencias en VP. Además, también encontramos que los JExp-ETR que juegan más horas a la semana tienen un mayor índice de MT que los JExp-ETR que juegan menos horas. Los resultados son discutidos en el marco de la capacidad de la MT, la importancia de los VJ-ETR y sus efectos en la cognición.

Detalles del artículo

Cómo citar
López Riquelme, G. O., Soto Alba, E. E. ., & Mata Bautista, C. R. . (2022). Jugar videojuegos de estrategia en tiempo real tiene efectos positivos en la memoria de trabajo. REVISTA ConCiencia EPG, 7(1), 143-175. https://doi.org/10.32654/revistaconcienciaepg
Sección
Articles

Cómo citar

López Riquelme, G. O., Soto Alba, E. E. ., & Mata Bautista, C. R. . (2022). Jugar videojuegos de estrategia en tiempo real tiene efectos positivos en la memoria de trabajo. REVISTA ConCiencia EPG, 7(1), 143-175. https://doi.org/10.32654/revistaconcienciaepg

Referencias

Adachi, P. J. C., & Willoughby, T. (2013). More Than Just Fun and Games: The Longitudinal Relationships Between Strategic Video Games, Self-Reported Problem Solving Skills, and Academic Grades. Journal of Youth and Adolescence, 42(7), 1041–1052. https://doi.org/10.1007/s10964-013-9913-9

Adam, K. C. S., & Serences, J. T. (2019). Working memory: Flexible but finite. Neuron, 103(2), 184–185. https://doi.org/10.1016/j.neuron.2019.06.025

Aronen, E. T., Vuontela, V., Steenari, M. R., Salmi, J., & Carlson, S. (2005). Working memory, psychiatric symptoms, and academic performance at school. Neurobiology of Learning and Memory, 83(1), 33-42. https://doi.org/10.1016/j.nlm.2004.06.010

Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., & Jaeggi, S. M. (2015). Improving fluid intelligence with training on working memory: a meta-analysis. Psychonomic Bulletin and Review, 22(2), 366–377. https://doi.org/10.3758/s13423-014-0699-x

Baddeley, A. (2003). Working memory: looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839. https://doi.org/10.1038/nrn1201

Baddeley, A. (2007). Working memory, thought and action. Oxford University Press.

Ballesteros, S., Mayas, J., Prieto, A., Ruiz-Marquez, E., Toril, P., & Reales, J. M. (2017). Effects of video game training on measures of selective attention and working memory in older adults: results from a randomized controlled trial. Frontiers in Aging Neuroscience, 9, 354. https://doi.org/10.3389/fnagi.2017.00354

Barr, M. (2017). Video games can develop graduate skills in higher education students: A randomised trial. Computers and Education, 113, 86–97. https://doi.org/10.1016/j.compedu.2017.05.016

Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23(4), 765.

Bavelier, D., & Green, C. S. (2019). Enhancing attentional control: Lessons from action video games. Neuron, 104(1), 147–163. https://doi.org/10.1016/j.neuron.2019.09.031

Bavelier, D., Green, C. S., Pouget, A., & Schrater, P. (2012). Brain plasticity through the life span: Learning to learn and action video games. Annual Review of Neuroscience 35, 391–416. https://doi.org/10.1146/annurev-neuro-060909-152832

Bejjanki, V. R., Zhang, R., Li, R., Pouget, A., Green, C. S., Lu, Z. L., & Bavelier, D. (2014). Action video game play facilitates the development of better perceptual templates. Proceedings of the National Academy of Sciences, 111(47), 16961-16966. https://doi.org/10.1073/pnas.1417056111

Blacker, K. J., & Curby, K. M. (2013). Enhanced visual short-term memory in action video game players. Attention, Perception, and Psychophysics, 75(6), 1128–1136. https://doi.org/10.3758/s13414-013-0487-0

Blacker, K. J., Curby, K. M., Klobusicky, E., & Chein, J. M. (2014). Effects of action video game training on visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1992–2004. https://doi.org/10.1037/a0037556

Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398. https://doi.org/10.1016/j.actpsy.2008.09.005

Bouchacourt, F., & Buschman, T. J. (2019). A Flexible Model of Working Memory. Neuron, 103(1), 147-160.e8. https://doi.org/10.1016/j.neuron.2019.04.020

Choi, E., Shin, S. H., Ryu, J. K., Jung, K. I., Kim, S. Y., & Park, M. H. (2020). Commercial video games and cognitive functions: Video game genres and modulating factors of cognitive enhancement. Behavioral and Brain Functions, 16(1), 1–14. https://doi.org/10.1186/s12993-020-0165-z

Clark, K., Fleck, M. S., & Mitroff, S. R. (2011). Enhanced change detection performance reveals improved strategy use in avid action video game players. Acta Psychologica, 136(1), 67–72. https://doi.org/10.1016/j.actpsy.2010.10.003

Colzato, L. S., van den Wildenberg, W. P. M., Zmigrod, S., & Hommel, B. (2013). Action video gaming and cognitive control: Playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychological Research, 77(2), 234–239. https://doi.org/10.1007/s00426-012-0415-2

Dale, G., & Green, C. S. (2017). Associations between avid action and real-time strategy game play and cognitive performance: a pilot study. Journal of Cognitive Enhancement, 1(3), 295–317. https://doi.org/10.1007/s41465-017-0021-8

Dye, M. W., Green, C. S., & Bavelier, D. (2009). Increasing speed of processing with action video games. Current Directions in Psychological Science, 18(6), 321-326. https://doi.org/10.1111/j.1467-8721.2009.01660.x

Finc, K., Bonna, K., He, X., Lydon-Staley, D. M., Kühn, S., Duch, W., & Bassett, D. S. (2020). Dynamic reconfiguration of functional brain networks during working memory training. Nature Communications, 11(1), 1–15. https://doi.org/10.1038/s41467-020-15631-z

Fry, A. F., & Hale, S. (2000). Relationships among processing speed, working memory, and fluid intelligence in children. Biological Psychology, 54(1-3), 1-34. https://doi.org/10.1016/S0301-0511(00)00051-X

Gajewski, P. D., Hanisch, E., Falkenstein, M., Thönes, S., & Wascher, E. (2018). What does the n-back task measure as we get older? Relations between working-memory measures and other cognitive functions across the lifespan. Frontiers in Psychology, 9, 2208. https://doi.org/10.3389/fpsyg.2018.02208

Gan, X., Yao, Y., Liu, H., Zong, X., Cui, R., Qiu, N., Xie, J., Jiang, D., Ying, S., Tang, X., Dong, L., Gong, D., Ma, W., & Liu, T. (2020). Action real-time strategy gaming experience related to increased attentional resources: an attentional blink study. Frontiers in Human Neuroscience, 14, 101. https://doi.org/10.3389/fnhum.2020.00101

Gee, J. P. (2003). What video games have to teach us about learning and literacy. Palgrave Macmillan.

Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10(9), 829-839. https://doi.org/10.1093/cercor/10.9.829

Glass, B. D., Maddox, W. T., & Love, B. C. (2013). Real-Time Strategy Game Training: Emergence of a Cognitive Flexibility Trait. PLoS ONE, 8(8), 70350. https://doi.org/10.1371/journal.pone.0070350

Gong, D., He, H., Ma, W., Liu, D., Huang, M., Dong, L., Gong, J., Li, J., Luo, C., & Yao, D. (2016). Functional Integration between Salience and Central Executive Networks: A Role for Action Video Game Experience. Neural Plasticity, 2016. https://doi.org/10.1155/2016/9803165

Gozli, D. G., Bavelier, D., & Pratt, J. (2014). The effect of action video game playing on sensorimotor learning: Evidence from a movement tracking task. Human Movement Science, 38, 152-162. https://doi.org/10.1016/j.humov.2014.09.004

Green, C. S., & Bavelier, D. (2003). Action video game modifies visual selective attention. Nature, 423(6939), 534-537. doi: 10.1038/nature01647

Green, C. S., & Bavelier, D. (2006). Enumeration versus multiple object tracking: the case of action video game players. Cognition, 101(1), 217–245. https://doi.org/10.1016/j.cognition.2005.10.004

Green, C. S., & Bavelier, D. (2007). Action-video-game experience alters the spatial resolution of vision: Research article. Psychological Science, 18(1), 88–94. https://doi.org/10.1111/j.1467-9280.2007.01853.x

Green, C. S., & Bavelier, D. (2015). Action video game training for cognitive enhancement. Current Opinion in Behavioral Sciences, 4, 103–108. https://doi.org/10.1016/j.cobeha.2015.04.012

Hempel, A., Giesel, F. L., Garcia Caraballo, N. M., Amann, M., Meyer, H., Wüstenberg, T., Essig, M., & Schröder, J. (2004). Plasticity of Cortical Activation Related to Working Memory during Training. American Journal of Psychiatry, 161(4), 745–747. https://doi.org/10.1176/appi.ajp.161.4.745

Homer, B. D., Plass, J. L., Raffaele, C., Ober, T. M., & Ali, A. (2018). Improving high school students' executive functions through digital game play. Computers & Education, 117, 50-58. https://doi.org/10.1016/j.compedu.2017.09.011

Huang, V., Young, M., & Fiocco, A. J. (2017). The Association between Video Game Play and Cognitive Function: Does Gaming Platform Matter? Cyberpsychology, Behavior, and Social Networking, 20(11), 689–694. https://doi.org/10.1089/cyber.2017.0241

Jaeggi, S. M., Perrig, W. J., Jonides, J., & Buschkuehl, M. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Science, 105, 6829–6833. https://doi.org/https://doi.org/10.1073/pnas.0801268105

Jolles, D. D., Grol, M. J., Van Buchem, M. A., Rombouts, S. A. R. B., & Crone, E. A. (2010). Practice effects in the brain: Changes in cerebral activation after working memory practice depend on task demands. NeuroImage, 52(2), 658–668. https://doi.org/10.1016/j.neuroimage.2010.04.028

Kane, M. J., Conway, A. R., Miura, T. K., & Colflesh, G. J. (2007). Working memory, attention control, and the N-back task: a question of construct validity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 615-622. https://doi.org/10.1037/0278-7393.33.3.615

Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology, 55(4), 352–358. https://doi.org/10.1037/h0043688

Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317–324. https://doi.org/10.1016/j.tics.2010.05.002

Kowalczyk, N., Shi, F., Magnuski, M., Skorko, M., Dobrowolski, P., Kossowski, B., Marchewka, A., Bielecki, M., Kossut, M., & Brzezicka, A. (2017). Real‐time strategy video game experience and structural connectivity – A diffusion tensor imaging study. Human Brain Mapping, 39(9), 3742-3758. https://doi.org/10.1002/hbm.24208

Kühn, S., Gallinat, J., & Mascherek, A. (2019). Effects of computer gaming on cognition, brain structure, and function: A critical reflection on existing literature. Dialogues in Clinical Neuroscience, 21(3), 319–330. https://doi.org/10.31887/DCNS.2019.21.3/skuehn

Li, X., Cheng, X., Li, J., Pan, Y., Hu, Y., & Ku, Y. (2015). Examination of mechanisms underlying enhanced memory performance in action video game players: a pilot study. Frontiers in Psychology, 6, 843. https://doi.org/10.3389/fpsyg.2015.00843

Lillard, A. S., & Erisir, A. (2011). Old dogs learning new tricks: Neuroplasticity beyond the juvenile period. Developmental Review, 31, 207–239. https://doi.org/10.1016/j.dr.2011.07.008

Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17, 391–400. https://doi.org/10.1016/j.tics.2013.06.006

Malinovitch, T., Jakoby, H., & Ahissar, M. (2021). Training-induced improvement in working memory tasks results from switching to efficient strategies. Psychonomic Bulletin and Review, 28(2), 526–536. https://doi.org/10.3758/s13423-020-01824-6

Miller, K. M., Price, C. C., Okun, M. S., Montijo, H., & Bowers, D. Is the n-back task a Valid neuropsychological measure for assessing working memory? Archives of Clinical Neuropsychology, 24, 711–717. https://doi.org/10.1093/arclin/acp063

Moisala, M., Salmela, V., Hietajärvi, L., Carlson, S., Vuontela, V., Lonka, K., Hakkarainen, K., Salmela-Aro, K., & Alho, K. (2017). Gaming is related to enhanced working memory performance and task-related cortical activity. Brain Research, 1655, 204–215. https://doi.org/10.1016/j.brainres.2016.10.027

Mueller, S. T. (2014). PEBL: The psychology experiment building language (Version 0.14)[Computer experiment programming language]. https://doi.org/10.1007/s00761-001-0265-9

Oberauer, K. (2005). Binding and inhibition in working memory: individual and age differences in short-term recognition. Journal of Experimental Psychology: General, 134(3), 368. https://doi.org/10.1037/0096-3445.134.3.368

Oei, A. C., & Patterson, M. D. (2013). Enhancing cognition with video games: A multiple game training study. PLoS ONE, 8(3), e58546. https://doi.org/10.1371/journal.pone.0058546

Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79. https://doi.org/10.1038/nn1165

Palaus, M., Marron, E. M., Viejo-Sobera, R., & Redolar-Ripoll, D. (2017). Neural basis of video gaming: A systematic review. Frontiers in Human Neuroscience, 11, 248. https://doi.org/10.3389/fnhum.2017.00248

Roberts, R., & Gibson, E. (2002). Individual differences in sentence memory. Journal of Psycholinguistic Research, 31(6), 573-598. https://doi.org/10.1023/A:1021213004302

Sala, G., & Gobet, F. (2019). Cognitive training does not enhance general cognition. Trends in Cognitive Sciences, 23, 9–20). https://doi.org/10.1016/j.tics.2018.10.004

Shipstead, Z., Harrison, T. L., & Engle, R. W. (2016). Working memory capacity and fluid intelligence: Maintenance and disengagement. Perspectives on Psychological Science, 11(6), 771-799. https://doi.org/10.1177/1745691616650647

Simmering, V. R., & Perone, S. (2013). Working memory capacity as a dynamic process. Frontiers in Psychology, 3, 567. https://doi.org/10.3389/fpsyg.2012.00567

Soveri, A., Antfolk, J., Karlsson, L., Salo, B., & Laine, M. (2017). Working memory training revisited: A multi-level meta-analysis of n-back training studies. Psychonomic Bulletin and Review, 24(4), 1077–1096. https://doi.org/10.3758/s13423-016-1217-0

Steenbergen, L., Sellaro, R., Stock, A. K., Beste, C., & Colzato, L. S. (2015). Action video gaming and cognitive control: playing first person shooter games is associated with improved action cascading but not inhibition. PloS ONE, 10(12), e0144364. https://doi.org/10.1371/journal.pone.0144364

Tang, H., Qi, X. L., Riley, M. R., & Constantinidis, C. (2019). Working memory capacity is enhanced by distributed prefrontal activation and invariant temporal dynamics. Proceedings of the National Academy of Sciences of the United States of America, 116(14), 7095–7100. https://doi.org/10.1073/pnas.1817278116

Taya, F., Sun, Y., Babiioni, F., Thakor, N., & Bezerianos, A. (2015). Brain enhancement through cognitive training: A new insight from brain connectome. Frontiers in Systems Neuroscience. https://doi.org/10.3389/fnsys.2015.00044

Toril, P., Reales, J. M., Mayas, J., & Ballesteros, S. (2016). Video game training enhances visuospatial working memory and episodic memory in older adults. Frontiers in Human Neuroscience, 10, 206. https://doi.org/10.3389/fnhum.2016.00206

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503. https://doi.org/10.1038/nature04171

Waris, O., Jaeggi, S. M., Seitz, A. R., Lehtonen, M., Soveri, A., Lukasik, K. M., Söderström, U., Hoffing, R. A. C., & Laine, M. (2019). Video gaming and working memory: A large-scale cross-sectional correlative study. Computers in Human Behavior, 97, 94–103. https://doi.org/10.1016/j.chb.2019.03.005

Wechsler, D. (2013). Escala Wechsler de Inteligencia para Adultos IV. Manual Moderno.

Wilhelm, O., Hildebrandt, A. H., & Oberauer, K. (2013). What is working memory capacity, and how can we measure it?. Frontiers in Psychology, 4, 433. https://doi.org/10.3389/fpsyg.2013.00433

Willis, S. L., & Schaie, K. W. (2009). Cognitive training and plasticity: theoretical perspective and methodological consequences. Restorative Neurology and Neuroscience, 27(5), 375-389. https://doi.org/10.3233/RNN-2009-0527

Wilms, I. L., Petersen, A., & Vangkilde, S. (2013). Intensive video gaming improves encoding speed to visual short-term memory in young male adults. Acta Psychologica, 142(1), 108–118. https://doi.org/10.1016/j.actpsy.2012.11.003

Yao, Y., Cui, R., Li, Y., Zeng, L., Jiang, J., Qiu, N., Dong, L., Gong, D., Yan, G., Ma, W., & Liu, T. (2020). Action Real-Time Strategy Gaming Experience Related to Enhanced Capacity of Visual Working Memory. Frontiers in Human Neuroscience, 14, 333. https://doi.org/10.3389/fnhum.2020.00333

Zhang, Y., Song, H., Liu, X., Tang, D., Chen, Y. E., & Zhang, X. (2017). Language learning enhanced by massive multiple online role-playing games (MMORPGs) and the underlying behavioral and neural mechanisms. Frontiers in Human Neuroscience, 11, 95. https://doi.org/10.3389/fnhum.2017.00095

Zhang, R. Y., Chopin, A., Shibata, K., Lu, Z. L., Jaeggi, S. M., Buschkuehl, M., Shawn Green, C., & Bavelier, D. (2021). Action video game play facilitates “learning to learn”. Communications Biology, 4(1), 1-10. https://doi.org/10.1038/s42003-021-02652-7

Zar, J.H. (2010). Biostatistical analysis. Pearson.

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.