Motivación: un recorrido histórico y teórico de los principales marcos conceptuales

Contenido principal del artículo

Matías Serafini
Lucas Cuenya

Resumen

Literatura sobre estudios motivacionales presenta una enrevesada yuxtaposición de definiciones provenientes de marcos teóricos disímiles. Un inconveniente que surge al revisar esta literatura es la polisemia que hay en torno al constructo. En un sentido general la motivación se relaciona con procesos básicos que proporcionan energía y dirección a la conducta. La energía implica que el comportamiento tiene fortaleza, intensidad y persistencia. La dirección refiere a que la conducta tiene un propósito y está orientada a una meta en particular. Se puede esbozar una división en torno al origen de la energía (i.e., interna vs externa) o la dirección del comportamiento (i.e., intrínseco vs extrínseco). La motivación no debe entenderse como una serie de categorías aisladas u opuestas, sino como un sistema multicomponente que dinamiza y orienta la conducta hacia el logro de una meta. En esta revisión se recorren los principales marcos conceptuales de las ciencias del comportamiento a partir de los que se desprenden términos motivacionales, desde la psicología experimental en modelos animales y los últimos hallazgos neurocientíficos hasta los trabajos sobre psicología sociocognitiva en humanos, con el objetivo de entablar lazos entre los estudios básicos y aplicados.

Detalles del artículo

Cómo citar
Serafini, M. ., & Cuenya, L. . (2020). Motivación: un recorrido histórico y teórico de los principales marcos conceptuales. REVISTA ConCiencia EPG, 5(2), 15-44. https://doi.org/10.32654/revistaconcienciaepg
Sección
Articles

Cómo citar

Serafini, M. ., & Cuenya, L. . (2020). Motivación: un recorrido histórico y teórico de los principales marcos conceptuales. REVISTA ConCiencia EPG, 5(2), 15-44. https://doi.org/10.32654/revistaconcienciaepg

Referencias

Aguado, L. (2005). Emoción, afecto y motivación. Alianza Editorial.

Autio, O. (2011). Elements in students motivation in technology education. Procedia - Social and Behavioral Sciences, 29, 1161–1168. https://doi.org/10.1016/j.sbspro.2011.11.350.

Barnes, G. W., & Kish, G. B. (1961). Reinforcing properties of the onset of auditory stimulation. Journal of Experimental Psychology, 62(2), 164– 170. https://doi.org/10.1037/h0042091.

Beck, R. C. (2000). Motivation. theories & principles (4ta ed.). Prentice Hall. Berlyne, D. E. (1960). Conflict, arousal, and curiosity. McGraw-Hill. https://doi.org/10.1037/11164-000.

Berridge, K. C. (2000). Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neuroscience & Biobehavioral Reviews, 24(2), 173– 198. https://doi.org/10.1016/s0149-7634(99)00072-x.

Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience & Biobehavioral Reviews, 20(1), 1– 25. https://doi.org/10.1016/0149-7634(95)00033-b

Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81(2), 179- 209. https://doi.org/10.1016/j.physbeh.2004.02.004.

Berridge, K. C. (2009a). ‘Liking’ and ‘wanting’ food rewards: Brain substrates and roles in eating disorders. Physiology & Behavior, 97(5), 537-550. https://doi.org/10.1016/j.physbeh.2009.02.044.

Berridge, K. C. (2009b). Wanting and liking: Observations from the neuroscience and psychology laboratory. Inquiry, 52(4), 378–398. https://doi.org/10.1080/00201740903087359.

Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309– 369. https://doi.org/10.1016/s0165-0173(98)00019-8.

Berridge, K. C., Venier, I. L., & Robinson, T. E. (1989). Taste reactivity analysis of 6-hydroxydopamine-induced aphagia: Implications for arousal and anhedonia hypotheses of dopamine function. Behavioral Neuroscience, 103(1), 36– 45. https://doi.org/10.1037/0735-7044.103.1.36.

Berridge, K.C., Robinson, T.E., & Aldridge, J.W. (2009). Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Current Opinion in Pharmacology, 9, 65–73. https://doi.org/10.1016/j.coph.2008.12.014.

Brown, J. S. (1961). The motivation of behavior.

McGraw-Hill. Burns, M., & Domjan, M. (1996). Sign tracking versus goal tracking in the sexual conditioning of male Japanese quail (Coturnix japonica). Journal of Experimental Psychology: Animal Behavior Processes, 22(3), 297–306. https://doi.org/10.1037/0097-7403.22.3.297.

Burns, M., & Domjan, M. (2001). Topography of spatially directed conditioned responding: Effects of context and trial duration. Journal of Experimental Psychology: Animal Behavior Processes, 27(3), 269– 278. https://doi.org/10.1037/0097-7403.27.3.269.

Butler, R. A. (1953). Discrimination learning by rhesus monkeys to visual exploration motivation. Journal of Comparative and Physiological Psychology, 46(2), 95– 98. https://doi.org/10.1037/h0061616.

Butler, R. A. (1954). Incentive conditions which influence visual exploration. Journal of Experimental Psychology, 48(1), 19– 23. https://doi.org/10.1037/h0063578.

Butler, R. A., & Alexander, H. M. (1955). Daily patterns of visual exploratory behavior in the monkey. Journal of Comparative and Physiological Psychology, 48(4), 247– 249. https://doi.org/10.1037/h0045210.

Campese, V., McCue, M., Lázaro-Muñoz, G., LeDoux, J. E., & Cain, C. K. (2013). Development of an aversive Pavlovian-to-instrumental transfer task in rat. Frontiers in Behavioral Neuroscience, 7, 1-10. https://doi.org/10.3389/fnbeh.2013.00176.

Castro, D. C., & Berridge, K. C. (2014b). Opioid hedonic hotspot in nucleus accumbens shell: Mu, Delta, and Kappa maps for enhancement of sweetness “liking” and “wanting”. Journal of Neuroscience, 34(12), 4239–4250. https://doi.org/10.1523/jneurosci.4458-13.2014.

Castro, D.C., & Berridge, K.C. (2014a). Advances in the neurobiological bases for food ‘liking’ versus ‘wanting’. Physiology & Behavior, 136, 22–30. https://doi.org/10.1016/j.physbeh.2014.05.022.

Clark, J. J., & Bernstein, I. L. (2006). Sensitization of salt appetite is associated with increased "wanting" but not "liking" of a salt reward in the sodium-deplete rat. Behavioral Neuroscience, 120(1), 206– 210. https://doi.org/10.1037/0735-7044.120.1.206.

Colagiuri, B., & Lovibond, P. F. (2015). How food cues can enhance and inhibit motivation to obtain and consume food. Appetite, 84, 79– 87. https://doi.org/10.1016/j.appet.2014.09.023.

Cole, S., Keefer, S. E., Anderson, L. C., & Petrovich, G. D. (2020). Medial prefrontal cortex neural plasticity, orexin receptor 1 signaling, and connectivity with the lateral hypothalamus are necessary in cuepotentiated feeding. The Journal of Neuroscience, 40(8), 1744- 1755. https://doi.org/10.1523/jneurosci.1803-19.2020.

Collins, R., Lanham, R. A., & Sigford, B. J. (2000). Reliability and validity of the Wisconsin HSS Quality of Life Inventory in traumatic brain injury. Journal of Head Trauma Rehabilitation, 15(5), 1139– 1148. https://doi.org/10.1097/00001199-200010000-00007.

Cooper, S. J. (2008). From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite, 51(3), 419– 427. https://doi.org/10.1016/j.appet.2008.06.005.

Cooper, S. J., & Ridley, E.T. (2005). Abecarnil and palatability: Taste reactivity in normal ingestion in male rats. Pharmacology, Biochemistry and Behavior, 81, 517 – 523. https://doi.org/10.1016/j.pbb.2005.02.014.

Cromwell, H. C., & Berridge, K. C. (1993) Where does damage lead to enhanced food aversion: the ventral pallidum/substantia innominata or lateral hypothalamus?. Brain Research, 624, 1-10. https://doi.org/10.1016/0006-8993(93)90053-P.

Cuenya, L., Bura, S., Serafini, M., & López, M. (2018). Consummatory successive negative contrast in rats: assessment through orofacial taste reactivity responses. Learning and Motivation, 63, 98-104. https://doi.org/10.1016/j.lmot.2018.04.001.

Cuenya, L., Sabariego, M., Donaire, R., Fernandez-Teruel, A., Torres, C., & Papini, M. R. (2015). Transfer across reward devaluation tasks in inbred roman rat strains. Learning and Motivation, 52, 22–31. https://doi.org/10.1016/j.lmot.2015.08.003.

Davey, G. C., & Cleland, G. G. (1982). Topography of signal‐centered behavior in the rat: effects of deprivation state and reinforcer type. Journal of the experimental analysis of behavior, 38(3), 291-304. https://doi.org/10.1901/jeab.1982.38-291.

Deci, E. L. (1975). Intrinsic motivation. Plenum Press.

Deckers, L. (2001). Motivation. biological, psychological, and environmental. Allyn & Bacon.

Dember, W. N. (1956). Response by the rat to environmental change. Journal of comparative and physiological psychology, 49(1), 93–95. https://doi.org/10.1037/h0045411.

Di Ciano, P., & Everitt, B. J. (2004). Conditioned reinforcing properties of stimuli paired with selfadministered cocaine, heroin or sucrose: implications for the persistence of addictive behaviour. Neuropharmacology, 47, 202-213. https://doi.org/10.1016/j.neuropharm.2004.06.005.

Dickinson, A., Smith, J., & Mirenowicz, J. (2000). Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists. Behavioral Neuroscience, 114(3), 468-483. https://doi.org/10.1037/0735-7044.114.3.468.

Domjan, M. (2010). Condicionamiento clásico: Fundamentos. En M. E., Ortiz Salinas (Ed.), Principios de aprendizaje y conducta (pp. 67- 103).

Cengage Learning. Flagel, S. B., & Robinson, T. E. (2017). Neurobiological basis of individual variation in stimulusreward learning. Current Opinion in Behavioral Sciences, 13, 178– 185. https://doi.org/10.1016/j.cobeha.2016.12.004.

Flagel, S. B., Akil, H., & Robinson, T. E. (2009). Individual differences in the attribution of incentive salience to reward-related cues: Implications for addiction. Neuropharmacology, 56, 139-148. https://doi.org/10.1016/j.neuropharm.2008.06.027.

Flagel, S. B., Watson, S. J., Akil, H., & Robinson, T. E. (2008). Individual differences in the attribution of incentive salience to a rewardrelated cue: Influence on cocaine sensitization. Behavioural Brain Research, 186(1), 48-56. https://doi.org/10.1016/j.bbr.2007.07.022.

Fowler, H., (1965). Curiosity and Exploratory Behavior.

Macmillan. Freud, S. (1915). Pulsiones y destinos de pulsión.

En J. L. Etcheverry (1976), Contribución a la Historia del Movimiento Psicoanalítico. Obras Completas. Tomo XIV. Amorrortu Editores.

Gavalerna, O. G., Seeley, R. J., Berridge, K. C., Grill, H. J., Epstein, A. N., & Schulkin, J. (1993). Lesions of the central nucleus of the amygdala I: effects on taste reactivity, taste aversion learning and sodium appetite. Behavioural Brain Research, 59, 11- 17. https://doi.org/10.1016/0166-4328(93)90146-H.

Grigson, P. S., Spector, A. C., & Norgren, R. (1993). Microstructural analysis of successive negative contrast in freefeeding and deprived rats. Physiology & Behavior, 54(5), 909- 916. https://doi.org/10.1016/0031-9384(93)90301-U.

Grill, H. J., & Norgren, R. (1978). The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Research, 143(2), 263–279. https://doi.org/10.1016/0006-8993(78)90568-1.

Guarda, A. S., Schreyer, C. C., Boersma, G. J., Tamashiro, K. L., & Moran, T. H. (2015). Anorexia nervosa as a motivated behavior: Relevance of anxiety, stress, fear and learning. Physiology & Behavior, 152, 466– 472. https://doi.org/10.1016/j.physbeh.2015.04.007.

Harlow, H. F. (1950). Learning and satiation of response in intrinsically motivated complex puzzle performance by monkeys. Journal of Comparative and Physiological Psychology, 43(4), 289– 294. https://doi.org/10.1037/h0058114.

Higgs, S., & Cooper, S. J. (1996). Hyperphagia induced by direct administration of midazolam into the parabrachial nucleus of the rat. European journal of pharmacology, 313(1-2), 1-9. https://doi.org/10.1016/0014-2999(96)00446-3.

Ho, C. Y., & Berridge, K. C. (2013). An orexin hot spot in ventral pallidum amplifies hedonic “liking” for sweetness. Neuropsychopharmacology, 39, 1655–1664.

Ho, C. Y., & Berridge, K. (2014). Excessive disgust caused by brain lesions or temporary inactivations: Mapping hotspots of nucleus accumbens and ventral pallidum. European Journal of Neuroscience, 40, 3556–3572. https://doi.org/10.1111/ejn.12720.

Holahan, M. R. (2004). Intra-Amygdala muscimol injections impair freezing and place avoidance in aversive contextual conditioning. Learning & Memory, 11(4), 436– 446. https://doi.org/10.1101/lm.64704.

Holmes, N. M., Marchand, A. R., & Coutureau, E. (2010). Pavlovian to instrumental transfer: A neurobehavioural perspective. Neuroscience & Biobehavioral Reviews, 34(8), 1277– 1295. https://doi.org/10.1016/j.neubiorev.2010.03.007.

Holsen, L., Lawson, E., Blum, J., Ko, E., Makris, N., Fazeli, P., … Goldstein, J. (2012). Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weightrestored women with anorexia nervosa. Journal of Psychiatry & Neuroscience, 37(5), 322– 332. https://doi.org/10.1503/jpn.110156.

Hughes, R. N. (1997). Intrinsic exploration in animals: motives and measurement. Behavioural Processes, 41(3), 213-226. https://doi.org/10.1016/S0376-6357(97)00055-7.

Hull, C. L. (1943). Principles of behavior. Appleton.

Jenkins, H. M., & Moore, B. R. (1973). The form of the auto-shaped response with food or water reinforcers. Journal of the Experimental Analysis of Behavior, 20(2), 163– 181. https://doi.org/10.1901/jeab.1973.20-163.

Kamenetzky, G., Mustaca, A., & Papini, M. (2008). An analysis of the anxiolytic effects of ethanol on consummatory successive negative contrast. Avances en Psicología Latinoamericana, 26(2), 135–144.

Kish, G. B. (1955). Learning when the onset of illumination is used as the reinforcing stimulus. Journal of Comparative and Physiological Psychology, 48(4), 261– 264. https://doi.org/10.1037/h0040782.

Knapska, E., Lioudyno, V., Kiryk, A., Mikosz, M., Gorkiewicz, T., Michaluk, P., … Kaczmarek, L. (2013). Reward learning requires activity of matrix metalloproteinase-9 in the central amygdala. Journal of Neuroscience, 33(36), 14591– 14600. https://doi.org/10.1523/jneurosci.5239-12.2013.

Konorski, J. (1948). Conditioned reflexes and neuron organization. Cambridge University Press. Lewis, A. H., Niznikiewicz, M. A.,

Delamater, A. R., & Delgado, M. R. (2013). Avoidance-based human Pavlovianto-instrumental transfer. European Journal of Neuroscience, 38(12), 3740– 3748. https://doi.org/10.1111/ejn.12377.

Lin, Y., McKeachie, W. J., & Kim, Y. C. (2003). College student intrinsic and/or extrinsic motivation and learning. Learning and Individual Differences, 13(3), 251-258. https://doi.org/10.1016/s1041-6080(02)00092-4.

Logan, F. A. (1968). Incentive theory and changes in reward. In Spence, K., W., &, Spence, J., T. (Eds.), The psychology of learning and motivation (pp.1-30). New York: Academic Press. https://doi.org/10.1016/s0079-7421(08)60420-x.

López, M., & Cantora, R. (2005). Condicionamiento, emoción y motivación. Aprendizaje de incentivo y regulación emocional de la conducta. Revista Electrónica de Motivación y Emoción, 8, 1-38.

Lorenz, K., & Leyhausen, P. (1973). Motivation of human and animal behavior. an ethological view. Van Nostrand-Reinhold.

Lorrain, D., Arnold, G., & Vezina, P. (2000). Previous exposure to amphetamine increases incentive to obtain the drug: long-lasting effects revealed by the progressive ratio schedule. Behavioural Brain Research, 107(1-2), 9–19. https://doi.org/10.1016/s0166-4328(99)00109-6.

Lovibond, P. F. (1983). Facilitation of instrumental behavior by a Pavlovian appetitive conditioned stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 9(3), 225-247. https://doi.org/10.1037/0097-7403.9.3.225.

Mackintosh, N. J. (1988). The psychology of animal learning. Academic Press.

Mahler, S. V., Smith, K. S., & Berridge, K. C. (2007). Endocannabinoid hedonic hotspot for sensory pleasure: anandamide in nucleus accumbens shell enhances ‘liking’ of a sweet reward.Neuropsychopharmacology, 32(11), 2267-2278. https://doi.org/10.1038/sj.npp.1301376.

Marx, M. H., Henderson, R. L., & Roberts, C. L. (1955). Positive reinforcement of the barpressing response by a light stimulus following dark operant pretests with no after effect. Journal of Comparative and Physiological Psychology, 48(2), 73-76. https://doi.org/10.1037/h0045062

Maslow, A. H. (1943). A theory of human motivation. Psychological Review, 50(4), 370-396. https://doi.org/10.1037/h0054346.

Maslow, A. H. (1954). Motivation and personality. Harper. Meyers, R., Pignault, A., & Houssemand, C. (2013). The role of motivation and self-regulation in dropping out of school. Procedia – Social and Behavioral Sciences, 89, 270-275. https://doi.org/10.1016/j.sbspro.2013.08.845

Moon, L. E., & Lodahl, T. M. (1956). The reinforcing effect of changes in illumination on lever-pressing in (2), 288-290. https://doi.org/10.2307/1418162.

Morales Domínguez, J. F., & Gaviria Stewart, E. (1990). La Motivación social. En S. Palafox y J. Vila. Motivación y emoción (pp. 147-195). Alhambra Longman.

Myers, A. K., & Miller, N. E. (1954). Failure to find a learned drive based on hunger; evidence for learning motivated by "exploration". Journal of Comparative and Physiological Psychology, 47(6), 428– 436. https://doi.org/10.1037/h0062664.

Parker, L. (1994). Rewarding drugs produce taste avoidance, but not taste aversion. Neuroscience and Biobehavioral Reviews, 19(1), 143- 151. https://doi.org/10.1016/0149-7634(94)00028-Y.

Pavlov, I. P. (1927). Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford University Press.

Pavlov, I. P. (1932). The reply of a physiologist to psychologists. Psychological Review, 39(2), 91-127. https://doi.org/10.1037/h0069929.

Pecina, S., Smith, K. S., & Berridge, K. C. (2006). Hedonic hot spots in the brain. The Neuroscientist, 12(6), 500-511. https://doi.org/10.1177/1073858406293154.

Peciña, S., & Berridge, K.C. (2005). Hedonic hot spot in nucleus accumbens shell: Where do μ-opioids cause increased hedonic impact of sweetness? The Journal of Neuroscience, 25, 11777–11786. https://doi.org/10.1523/JNEUROSCI.4458-13.2014.

Peciña, S., & Berridge, K. C. (1996). Brainstem mediates diazepam enhancement of palatability and feeding: microinjections into fourth ventricle versus lateral ventricle. Brain Research, 727(1-2), 22– 30. https://doi.org/10.1016/0006-8993(96)00325-3.

Peciña, S., Berridge, K. C., & Parker, L. A. (1997). Pimozide does not shift palatability: separation of anhedonia from sensorimotor suppression by taste reactivity. Pharmacology Biochemistry and Behavior, 58(3), 801-811. https://doi.org/10.1016/S0091-3057(97)00044-0.

Peterson, G. B., Ackilt, J. E., Frommer, G. P., & Hearst, E. S. (1972). Conditioned approach and contact behavior toward signals for food or brainstimulation reinforcement. Science, 177, 1009- 1011. https://doi.org/10.1126/science.177.4053.1009.

Petrovich, G. D., Ross, C. A., Gallagher, M., & Holland, P. C. (2007). Learned contextual cue potentiates eating in rats. Physiology & Behavior, 90(2-3), 362– 367. https://doi.org/10.1016/j.physbeh.2006.09.031.

Pfaffmann, C., & Norgren, R. (1977). Sensory affect and motivation. Annals of the New York Academy of Sciences, 290(1), 18-34. https://doi.org/10.1111/j.1749-6632.1977.tb39713.x.

Rana, S. A., & Parker, L. A. (2008). Differential effects of neurotoxininduced lesions of the basolateral amygdala and central nucleus of the amygdala on lithium-induced conditioned disgust reactions and conditioned taste avoidance. Behavioural Brain Research, 189, 284–297. https://doi.org/10.1016/j.bbr.2008.01.005.

Real Academia Española. (2019). Diccionario de la lengua española (22.a ed.). Consultado en https://dle.rae.es/motivo#B6vh6H f Reeve, J. (2003), Motivación y emoción. McGraw-Hill. Rescorla, R. A. (1988). Pavlovian conditioning: It's not what you think it is. American psychologist, 43(3), 151-160. https://doi.org/10.1037/0003-066X.43.3.151.

Reynolds, S., & Berridge, K.C. (2002). Positive and negative motivation in nucleus accumbens shell: Bivalent rostrocaudal gradients for GABAelicited eating, taste “liking”/“disliking” reactions, place preference/avoidance, and fear. The Journal of Neuroscience, 22, 7308– 7320. https://doi.org/20026734.

Richardson, D. K., Reynolds, S. M., Cooper, S. J., & Berridge, K. C. (2005). Endogenous opioids are necessary for benzodiazepine palatability enhancement: Naltrexone blocks diazepam-induced increase of sucrose-liking. Pharmacology, Biochemistry and Behavior, 81, 657- 663. https://doi.org/10.1016/j.pbb.2005.05.006.

Robinson, J. S. (1961). The reinforcing effects of response-contingent light increment and decrement in hooded rats. Journal of Comparative and Physiological Psychology, 54(4), 470– 473. https://doi.org/10.1037/h0047984

Robinson, T. E., Yager, L. M., Cogan, E. S., & Saunders, B. T. (2014). On the motivational properties of reward cues: Individual differences. Neuropharmacology, 76, 450– 459. https://doi.org/10.1016/j.neuropharm.2013.05.040.

Rogers, P. J. (1990). Why a palatability construct is needed. Appetite, 14(3), 167-170. https://doi.org/10.1016/0195- 6663(90)90083-K.

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. https://doi.org/10.1006/ceps.1999.1020.

Saunders, B. T., Yager, L. M., & Robinson, T. E. (2013). Cue-evoked cocaine “craving”: role of dopamine in the accumbens core. Journal of Neuroscience, 33(35), 13989– 14000. https://doi.org/10.1523/jneurosci.0450-13.2013.

Schmaltz, L. W., & Theios, J. (1972). Acquisition and extinction of a classically conditioned response in hippocampectomized rabbits (Oryctolagus cuniculus). Journal of Comparative and Physiological Psychology, 79, 328-333.

Serafini, M., & Cuenya, L. (2017). Evaluación del efecto del alojamiento en dos modelos animales para el estudio de las respuestas de frustración. Anuario de Investigaciones, 24, 311-318.

Shaham, Y., Shalev, U., Lu, L., de Wit, H., & Stewart, J. (2002). The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology, 168(1-2), 3– 20. https://doi.org/10.1007/s00213-002-1224-x.

Smith, K. S., & Berridge, K. C. (2005). The ventral pallidum and hedonic reward: Neurochemical maps of sucrose “liking” and food intake. Journal of Neuroscience, 25(38), 8637–8649. https://doi.org/10.1523/JNEUROSCI.1902-05.2005.

Smith, K. S., & Berridge, K. C. (2007). Opioid limbic circuit for reward: Interaction between hedonic hot spots of nucleus accumbens and ventral pallidum. Journal of Neuroscience, 27(7), 1594–1605. https://doi.org/10.1523/JNEUROSCI.4205-06.2007.

Smith, K. S. Berridge, K. C., & Aldridge, J. W. (2011). Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proceedings of the National Academy of Sciences, 108(27), 255–264. https://doi.org/10.1073/pnas.1101920108.

Smith, K. S., & Berridge, K. C. (2005). The ventral pallidum and hedonic reward: neurochemical maps of sucrose “liking” and food intake. The Journal of Neuroscience, 25, 8637– 8649. https://doi.org/10.1523/JNEUROSCI.1902-05.2005.

Söderpalm, A. H., & Berridge, K. C. (2000). The hedonic impact and intake of food are increased by midazolam microinjection in the parabrachial nucleus. Brain Research, 877(2), 288–297. https://doi.org/10.1016/s0006-8993(00)02691-3.

Solomon, P. R., & Moore, J. W. (1975). Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (Oryctolagus cuniculus) following hippocampal ablation. Journal of Comparative and Physiological Psychology, 89(10), 1192– 1203. https://doi.org/10.1037/h0077183.

Solomon, P. R., Pomerleau, D., Bennett, L., James, J., & Morse, D. L. (1989). Acquisition of the classically conditioned eyeblink response in humans over the life span. Psychology and Aging, 4(1), 34–41. https://doi.org/10.1037/0882-7974.4.1.34.

Steiner, J. E., Glaser, D., Hawilo, M. E., & Berridge, K. C. (2001). Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neuroscience & Biobehavioral Reviews, 25(1), 53– 74. https://doi.org/10.1016/s0149 -7634(00)00051-8.

Stelly, C. E., Haug, G. C., Fonzi, K. M., Garcia, M. A., Tritley, S. C., Magnon, A. P., ... & Wanat, M. J. (2019). Pattern of dopamine signaling during aversive events predicts active avoidance learning. Proceedings of the National Academy of Sciences, 116(27), 13641-13650. https://doi.org/10.1073/pnas.1904249116.

Suárez, A., Mustaca, A., Pautassi, R., & Kamenetzky, G. (2014). Ontogeny of consummatory successive negative contrast in rats. Developmental Psychobiology, 56, 989-998. https://doi.org/10.1002/dev.2117 8.

Tantot, F., Parkes, S. L., Marchand, A. R., Boitard, C., Naneix, F., Layé, S., ... & Ferreira, G. (2017). The effect of high-fat diet consumption on appetitive instrumental behavior in rats. Appetite, 108, 203-211. https://doi.org/10.1016/j.appet.2016.10.001.

Taormina, R. J., & Gao, J. H. (2013). Maslow and the motivation hierarchy: Measuring satisfaction of the needs. The American journal of psychology, 126(2), 155-177. https://doi.org/10.5406/amerjpsyc.126.2.0155.

Tindell, A. J., Smith, K. S., Peciña, S., Berridge, K. C., & Aldridge, J.W. (2006). Ventral pallidum firing codes hedonic reward: When a bad taste turns good. Journal of Neurophysiology, 96, 2399-2409. https://doi.org/10.1152/jn.00576.2006.

Wahba, M. A., & Bridwell, L. G. (1976). Maslow reconsidered: A review of research on the need hierarchy theory. Organizational Behavior and Human Performance, 15(2), 212–240. https://doi.org/10.1016/0030-5073(76)90038-6.

Weingarten, H. P. (1983). Conditioned cues elicit feeding in sated rats: A role for learning in meal initiation. Science, 220(4595), 431-433. https://doi.org/10.1126/science.6836286.

Williams, B. A. & Dunn, R. (1991). Preference for conditioned reinforcement. Journal of the Experimental Analysis of Behavior, 55(1), 37-46. DOI:10.1901/jeab.1991.55-37

Winston, C. N., Maher, H., & Easvaradoss, V. (2017). Needs and values: An exploration. The Humanistic Psychologist, 45(3), 295–311. https://doi.org/10.1037/hum0000054.

Wyvell, C. L., & Berridge, K. C. (2000). Intraaccumbens amphetamine increases the conditioned incentive salience of sucrose reward: Enhancement of reward “wanting” without enhanced “liking” or response reinforcement. The Journal of Neuroscience, 20(21), 8122– 8130. https://doi.org/10.1523/jneurosci.20-21-08122.2000.

Wyvell, C. L., & Berridge, K. C. (2001). Incentive-sensitization by previous amphetamine exposure: Increased cue-triggered “wanting” for sucrose reward. Journal of Neuroscience, 21(19), pp. 7831–7840. https://doi.org/10.1523/JNEUROSCI.21-19-07831.2001.

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.